Bank Automation News

No products in the cart.

Subscribe
  • News
  • Data
  • Transactions
  • Events
    • Bank Automation Summit
    • Apply to Speak
    • Apply to Demo
  • Podcast
  • WEBINARS
    • On-Demand Webinar: Emerging fintechs: New technologies you need to know now
    • Webinar Library
Log In
No Result
View All Result
  • AI
  • Business Banking
  • Core
  • Cloud
  • Payments
  • Retail Banking
  • Risk & Security
Bank Automation News
  • News
  • Data
  • Transactions
  • Events
    • Bank Automation Summit
    • Apply to Speak
    • Apply to Demo
  • Podcast
  • WEBINARS
    • On-Demand Webinar: Emerging fintechs: New technologies you need to know now
    • Webinar Library
BAN PLUS
Log In
No Result
View All Result
Bank Automation News
No Result
View All Result

Podcast: Using AI to identify fraud

‘The Buzz’ speaks with AML RightSource CTO Phil McLaughlin

Whitney McDonaldbyWhitney McDonald
August 15, 2023
in Risk & Security
Reading Time: 15 mins read
0
Share on Facebook

AI has joined the fight against bank fraud, and further enhancements to the technology are helping financial institutions monitor risk.

AI technology is advancing quickly and is “approaching the ability to emulate the more advanced features of human cognition,” Phil McLaughlin, chief technology officer for fintech AML RightSource, tells Bank Automation News on this episode of “The Buzz” podcast.

Founded in 2004, Cleveland, Ohio-based AML RightSource is a provider of technology-enabled managed services and software solutions, McLaughlin said. The anti-money laundering fintech combines AI-led technology with its team of 1,000 investigators working in the field.

The fintech’s bank clients, including Puerto Rico-based Stern International Bank, are leveraging AML RightSource’s AI to monitor onboarding and transaction activity, McLaughlin said. The fintech’s technology is able to identify whether a potential bank customer is politically exposed, or if there is negative media about them, or if other risks could surface.

“We have tools and techniques that allow us to monitor changes in [customer] activities, identify that a change has occurred, evaluate the parties involved, to see if there’s a risk event that we need to surface,” he said.

As AI evolves, its ability to screen potential clients in the onboarding process and monitor transactions will become faster and more automated, allowing “human beings to focus on the things that are really salient,” McLaughlin said.

Listen as AML RightSource CTO discusses best practices in anti-money laundering and how AI advancements can improve fraud fighting techniques.

Subscribe to The Buzz Podcast on  iTunes, Spotify, Google podcasts, or download the episode. 

The following is a transcript generated by AI technology that has been lightly edited but still contains errors.

Whitney McDonald 0:02
Hello, and welcome to The Buzz, a bank automation news podcast. My name is Whitney McDonald and I’m the editor of bank automation news. Joining me today is AML, right source Chief Technology Officer Phil McLaughlin. He’s here to discuss the need for anti money laundering practices, and advancements in AML. Technology.Phil McLaughlin 0:22
My name is Phil McLaughlin, I’m the Chief Technology Officer at AML. Right source. Amo, right source is a provider of managed services, which is people, financial crime advisory services, and then also technology platforms, and sort of the blending of those three offerings together in technology enabled managed services, and we support banks, other non bank, financial institutions, fintechs, all over the world, we have around 4000 investigators that work with our customers to help them stay compliant in the AML KYC space. And we’re bringing technology solutions to those customers, to help them be more efficient and more effective. And, you know, that’s really the the problem that we’re we’re all about, you know, trying to make the efforts that our customers and that that our, you know, internal teams are trying to accomplish as efficient as effective as possible.

Whitney McDonald 1:20
Great. Well, thanks so much for joining us on The buys, let’s take a step back here first and set the scene with financial or fighting financial crime today, you could talk us through really the need for this advanced technology, especially when identifying money laundering.

Phil McLaughlin 1:39
Definitely. So the the estimates that are out there today are that basically the current methods that we’re using for any money laundering, our lack, you know, are lacking, right, they fall short of what we really need to accomplish here. If you look at a number of estimates from the UN and others, it’s something like two to 5% of global GDP are, you know, between 800 billion and $2 trillion that are involved in, in money laundering, and we’re probably only catching maybe 5% of that. So despite the significant amount of effort that banks, regulatory agencies, folks likes us that are in the services and technology business, you know, there, there’s still a lot of room for improvement to make this stuff better. And then when you sort of look at the technology side of this, that the technology systems themselves that are helping are really not all that effective, they look at relatively relatively small amount of data, when trying to make assessments, they are really pretty simplistic in terms of the things that they’re looking at, like simple patterns, that sort of stuff, simple name matching. And we know that the the reality of the of the financial crime space is a lot more complicated than that. And so really, technology needs to come in and help improve this. You know, again, the way to think about this is, this is largely today a very human intensive effort, the tools alert or highlight certain characteristics, but it’s really left to the investigator really left to the human being to do the vast majority of the legwork, do all of the data synthesis, do the evaluation, make a conclusion, draw a recommendation, document all of that. And it’s a very, very time consuming process. So the degree to which technology can be employed to help make those human beings more efficient and effective. That is, is where we’re going.

Whitney McDonald 3:35
Now, before we get into where we’re going with, with new technology and advances in technology in this space, maybe we can talk through what exists today. What are some best practices in tackling, identifying and in identifying money laundering today?

Phil McLaughlin 3:52
Sure. So I think we’re, we think about this, kind of from a current state future state sort of thing, right? So really, the goal is gonna be to improve the level of automation and to include or improve the level of efficiency with the investigators. Like I said, a lot of the processes today are very limited in terms of what they look at. So you know, as you’re thinking about as people are thinking about, you know, how would they improve their process, looking at more data, automating anything that they can the robotic process automation capabilities are out there are a good place to start in terms of, you know, thinking about how to make things better. Expanding the frequency of monitoring again today, because it’s a very human intensive process. Things get looked at maybe on a once a year basis, once every six months basis, if there’s things that we can do to make that an ongoing, continuous monitoring type of a solution that lets us find things faster, and allows human beings to flow focus on the things that are really salient as opposed to separating the wheat from the chaff so to speak. Again, a lot of the tools that are out there right now, or are very limited in terms of their technology or their their detection capabilities, a lot of them are rule based. So, you know, the simple rules that are capable of being implemented in these kinds of solutions are, are very limited. And that’s really why, you know, the broadening of the of the technology platforms and the algorithmic content and moving towards AI, and some of these other things are so important to help us, you know, begin to tackle these problems in a more efficient way.

Whitney McDonald 5:41
You can’t talk about anything in technology right now without talking through AI. Right. So maybe you could expand on that a little bit. Why is AI well suited for this type of technology? And how can AI fit into this puzzle?

Phil McLaughlin 5:55
Thing, AI is exceptionally well suited to the AML challenge. The thing that’s great about it is, is that, you know, as people now are starting to have a pretty broad awareness, some of these AI tools and techniques are really approaching the ability to emulate, you know, the more advanced features of human cognition, right, so they are really able to, not only, you know, do what we consider to be really relatively simple things, but but much more complex levels of thinking much more complex levels of inference of summarization, those kinds of things. And, you know, being able to figure out even with traditional AI techniques, you know, be able to, to do anomaly detection, figure out what’s notable, and, you know, separate the needle, find the needle in the haystack, so to speak. There’s a bunch of different flavors of AI that are sort of relevant here, you know, two good examples are natural language processing. So if you think about what an investigator has to do, to go read news articles, read various documents and artifacts, and try to infer and connect and synthesize all the connections there. It’s a huge amount of work and the degree to which you can get knowledge from text and understand it and present it to a person in a way that is easy for them to then internalize and take action on. That’s just a super, super big force multiplier. And then, you know, the more traditional, you know, machine learning models, whether they’re classifiers, or whether they’re other types of, of neural networks are really good at at, you know, training to be able to figure out things like entity name, or entity type from an entity name, that’s one of the problems in money laundering is that the, the banks and financial institutions know a lot about their customers, because they vetted them in the onboarding process, but they don’t know much about the counterparties or other related parties. And so the amount of work that can be done to to, in an automated sense to try to collect information on those related parties and counterparties is going to make the total understanding that the investigator has that much more clear and allow them to, you know, more, resolve those issues or solve the cases in a more timely manner.

Whitney McDonald 8:18
Now, we’ve talked through the technology, the opportunity for advancements here the need for solutions like this. Can we talk through where AML right source fits into this and how the technology works?

Phil McLaughlin 8:31
Yeah, sure. So as I mentioned earlier, email is a provider of technology enabled managed services, as well as software solutions to banks, fintechs, and other institutions that have regulatory requirements to help oversee the safety of the global banking systems. We have 1000s of investigators working in the field on KYC, suspicious activity monitoring, you know, those around the globe, really, across the all the different global geographies, in addition to you know, providing sort of these AI LED technology solutions. So we’re really all about trying to bring this great technology along with great people to our customers. You know, one of the things that I would say to somebody who’s looking into trying to embark on, you know, putting their toe in the AI for AML waters is, make sure you work with somebody who knows AML because if you’re just going to work with somebody who knows AI, you’re going to end up paying for their learning curve. And there’s so much nuance in terms of the data and the risk bearing characteristics that are that are relevant and important in the AML space, that you really want to have a partner that understands that stuff. And so, you know, we think we are, you know, the best of the best in that regard, really having, you know, strong practitioners, coupled with that AI technology, you said bringing that AML AI, sort of blend to the our customers.

Whitney McDonald 10:07
Now speaking of a customer, maybe you can talk through or identify some use cases who would use this? How would you get in? How would you integrate maybe talking through what that entails?

Phil McLaughlin 10:20
For sure. So our customers and our solutions tend to follow the customer lifecycle. So think about your relationship with your bank, you open your account with a bank, they onboard you, they make sure you’re not a bad guy, they make sure you’re who you say you are. Once you’re on boarded, then you can start transacting. So there’s some, you know, transaction monitoring that’s going on the so called suspicious activity monitoring. So we’re helping in that regard. There’s also sort of know your customer monitoring that goes on through the course of the lifecycle. So let’s say you’re a bank, let’s say you’re a corporation, and you’ve just had a change over in your board of directors, and you want to understand, you know, you’re the bank wants to understand, is this new person on your board? Are they a good guy? Are they a politically exposed person? Do they have? Is there negative media about them? Is there some other risk that should be surfaced related to, to this district board member. And so we have tools and techniques that allow us to monitor changes in those activities, identify that a change has occurred, evaluate the parties involved, to see if there’s a risk event that we need to surface, and then we’ll surface that, then then, you know, we also help with more broader just workflow across that whole client lifecycle, helping customers to manage that full trajectory from onboarding through monitoring through suspicious activity detection, periodic monitoring, and then to offboarding. So it’s, it’s all the stuff that you’d think about in terms of, you know, that full lifecycle.

Whitney McDonald 11:59
Now, quantifying here some savings that that someone that a bank might benefit from, from this client might benefit from this catching fraud examples of successes here.

Phil McLaughlin 12:14
Yeah, definitely. So like I mentioned, the big banks do a pretty good job of understanding who their customers are, but it’s this community of related parties where there’s often a lot of insights that can be gained. And also just like, understanding sort of the specific nature of the activity and trying to identify if something is anomalous. So for example, we have, you know, a tremendous number of our customers who’ve seen, you know, instances where they’ve identified risk in in Counterparty. So for example, some buddy might be have negative media associated with them, they might be a bad guy, they might be a politically exposed person, that kind of stuff. Some of the more interesting ones, when you start looking at the AI techniques, the more advanced AI techniques is looking at things like inconsistent line of businesses. So if you’ve got a banana, or steel company, and they’re buying iron ore, that makes perfect sense, right. And if you’ve got an iron, steel company, they’re paying for bananas, that doesn’t make sense. So the tools and techniques are able to learn by looking at a massive amount of data, what kinds of relationships are appropriate, what kinds of relationships are inappropriate or consistent with what one would expect. And they can highlight that to the investigator that this, this company seems to be doing something that is counter to what one would expect given, given what we know about them. We’ve seen a number of instances of that with our customers, we’ve also seen the issue of money going the wrong way. So let’s say you’ve got a we’ve seen an instance where there was a casino, and they were getting transacted with a company that makes computers and so you would expect to see the money flowing from the casino to the computer company, because they’re purchasing computers to use in their Casino. That would be a perfectly reasonable use case. But what we saw is the money going the other way. It turns out that after further investigation, the the gentleman who was the head of the computer company had a bunch of different activity that he was involved in. And you know, we were able to help surface that particular instance, we’ve seen other instances where companies are related to risky parties or risky jurisdictions. So let’s say that people are concerned about doing business with any buddy who’s not only in Cuba, but doing anything related to Cuba. And so we’re able to detect, for example, that there are companies in Venezuela, who are arranging travel to Cuba, which is not illegal in the context of what they are doing as a company but But, but the US banking folks would want to know that that party is has a relationship with Cuba and is doing something there. So there’s, there’s a lot of those kinds of instances where, you know, we’re able to surface relationships or surface characteristics about the related parties that help make sure that the, the, our customers understand what that full picture of risk is. And it just wouldn’t be practical for humans to do all the legwork to hunt each and every one of those things down. So, you know, at the end of the day, it’s really coming back to automating whatever we can, for the investigator, making the investigator giving the investigator, you know, the, the best point of departure to resolve the investigation as they can. So I the analogy that I like is, um, let’s say, doing an investigation is a 100 meter dash, you know, if we can start a client at the 50 meter line, or the 70 meter line, and all they’ve got to do is get to the end, then that’s, that’s, that’s the goal. And that’s, that’s really what we’re seeing with our customers, they’re seeing a significant amount of savings, in terms of the amount of time that it takes. And it also puts the investigator in a lot better position because they’re able to then instead of doing all the legwork, all this grunt work of doing Google searches and searching for names and structured databases and searching, you know, downloading transactions and building pivot tables, and totaling in sub totaling all this stuff to see what’s going on. We can give them all of that prevented, we can give them all of that, in a human readable narrative, supported with all the documentary evidence, and it really lets them the investigator focus on using their training their experience, their their education and, and an expertise in actually understanding if there’s financial crime there, as opposed to being an Excel expert or a Google search expert.

Whitney McDonald 16:59
Now with with these use cases, and working with clients and and all of that what you just discussed, what are you working on when it comes to innovating in this space and forward looking maybe just to the end of this year? What am all right sources is working on I know, we talked through AI opportunity and machine learning and of course generative AI as a as a buzzword as well, maybe you can share a little bit about what you’re looking into?

Phil McLaughlin 17:26
Yeah, for sure. So, the good news for us is that we’ve been really bringing AI to the financial crime flight now since 2015. So we are well versed in how to use and employ these different techniques to to solve the problems. We’re looking right now, working in a couple of different areas, one major area that we’re looking at is we’re rolling out the next generation adverse media solution that we have. So really helping, you know, our customers very effectively and efficiently get surfaced articles, news articles content from around the world, that might indicate that they’re a customer or a related parties involved in something that would be risk bearing, we have a tremendous amount of natural language processing and other artificial intelligence techniques that are baked into that, and we’re gonna see, you know, a two fold improvement, at least in terms of the efficiency with with with which the investigators can adjudicate the articles as well as a significant drop in false positives. All of these adverse Media Solutions, try to do their best to give relevant content, but it’s a hard problem to solve the next generation of our stuff that we’re bringing out is going to do a fantastic job of that. We’re also we are working in a number of different areas with with LLM with the generative AI techniques. You know, the way we think about this is, this is just another tool in the ever evolving AI toolbox. So, you know, when when we talk about AI, it really spans the gamut of all the different things that can fit in there, right, from natural language processing to more traditional, supervised and unsupervised machine learning to the new LM and a whole bunch of other, you know, techniques that are in this toolbox. And so, you know, our view that L is that LM is is just another tool that we can utilize to help solve problems. The work that we’ve done with LM M’s and we expect to have some of these use cases in production in the next few months, has largely to do with with inference and reasoning and summarization, like those are the things that the algorithms are really very good at. So asking the LLM, read this article and tell me if this entity is a good guy or a bad guy. They’re pretty good at that. Looking to do knowledge extraction, taking the LLM and saying, you know, tell me how old the subjects in this article are or tell me what jurisdiction in there that are in, those are very easy things for humans to do. Not very easy things for some of the traditional AI techniques that we’ve had out there, and, but are something that LLM ‘s are very good at. So, again, we’re looking at a number of different areas having to do with data inference, summarization, those sorts of things. And we’re going to be peppering them essentially, throughout the solutions, we’ll be sort of using them to augment the existing capabilities. A lot of the techniques that are there could have AI techniques are often layered. So you may start off with one technique, and that may get you 50% of the answers, then you may need to go to a second technique with that is different or better to get to another 25%. And then you need to go to a third technique to get you in another, you know, 10, or 15%. And so the way we think about these MLMs, in the short term is, is them just being another layer another tool to help fit into that tapestry of, of solutions that we’re using, you know, in the big picture, our view is that, you know, these, the MLMs are here to stay, they are going to become more and more important tool in the toolbox. Like I said, they’re not going to replace everything. They don’t do everything, as well as some of the other techniques. But I think that over time, we’ll see them becoming more and more prevalent. I also don’t think that in this space, at least LLM ‘s are ever going to just entirely take over the the process, right. There’s always going to be the need for human judgment, human intuition, human training and experience to be able to adjudicate the final outcome. And while the LMS can definitely help with efficiency and effectiveness, they’re they’re never going to be maybe never too strong. But in the near term, they’re not going to be sort of the standalone, you know, Uber AI solution that that answers the questions for us.

Whitney McDonald 22:12
You been listening to the buzz of bank automation news podcast, please follow us on LinkedIn. And as a reminder, you can rate this podcast on your platform of choice. Thank you for your time and be sure to visit us at Bank automation news.com For more automation news,

AI has joined the fight against bank fraud, and further enhancements to the technology are helping financial institutions monitor risk.

AI technology is advancing quickly and is “approaching the ability to emulate the more advanced features of human cognition,” Phil McLaughlin, chief technology officer for fintech AML RightSource, tells Bank Automation News on this episode of “The Buzz” podcast.

Founded in 2004, Cleveland, Ohio-based AML RightSource is a provider of technology-enabled managed services and software solutions, McLaughlin said. The anti-money laundering fintech combines AI-led technology with its team of 1,000 investigators working in the field.

The fintech’s bank clients, including Puerto Rico-based Stern International Bank, are leveraging AML RightSource’s AI to monitor onboarding and transaction activity, McLaughlin said. The fintech’s technology is able to identify whether a potential bank customer is politically exposed, or if there is negative media about them, or if other risks could surface.

“We have tools and techniques that allow us to monitor changes in [customer] activities, identify that a change has occurred, evaluate the parties involved, to see if there’s a risk event that we need to surface,” he said.

As AI evolves, its ability to screen potential clients in the onboarding process and monitor transactions will become faster and more automated, allowing “human beings to focus on the things that are really salient,” McLaughlin said.

Listen as AML RightSource CTO discusses best practices in anti-money laundering and how AI advancements can improve fraud fighting techniques.

Subscribe to The Buzz Podcast on  iTunes, Spotify, Google podcasts, or download the episode. 

The following is a transcript generated by AI technology that has been lightly edited but still contains errors.

Whitney McDonald 0:02
Hello, and welcome to The Buzz, a bank automation news podcast. My name is Whitney McDonald and I’m the editor of bank automation news. Joining me today is AML, right source Chief Technology Officer Phil McLaughlin. He’s here to discuss the need for anti money laundering practices, and advancements in AML. Technology.Phil McLaughlin 0:22
My name is Phil McLaughlin, I’m the Chief Technology Officer at AML. Right source. Amo, right source is a provider of managed services, which is people, financial crime advisory services, and then also technology platforms, and sort of the blending of those three offerings together in technology enabled managed services, and we support banks, other non bank, financial institutions, fintechs, all over the world, we have around 4000 investigators that work with our customers to help them stay compliant in the AML KYC space. And we’re bringing technology solutions to those customers, to help them be more efficient and more effective. And, you know, that’s really the the problem that we’re we’re all about, you know, trying to make the efforts that our customers and that that our, you know, internal teams are trying to accomplish as efficient as effective as possible.

Whitney McDonald 1:20
Great. Well, thanks so much for joining us on The buys, let’s take a step back here first and set the scene with financial or fighting financial crime today, you could talk us through really the need for this advanced technology, especially when identifying money laundering.

Phil McLaughlin 1:39
Definitely. So the the estimates that are out there today are that basically the current methods that we’re using for any money laundering, our lack, you know, are lacking, right, they fall short of what we really need to accomplish here. If you look at a number of estimates from the UN and others, it’s something like two to 5% of global GDP are, you know, between 800 billion and $2 trillion that are involved in, in money laundering, and we’re probably only catching maybe 5% of that. So despite the significant amount of effort that banks, regulatory agencies, folks likes us that are in the services and technology business, you know, there, there’s still a lot of room for improvement to make this stuff better. And then when you sort of look at the technology side of this, that the technology systems themselves that are helping are really not all that effective, they look at relatively relatively small amount of data, when trying to make assessments, they are really pretty simplistic in terms of the things that they’re looking at, like simple patterns, that sort of stuff, simple name matching. And we know that the the reality of the of the financial crime space is a lot more complicated than that. And so really, technology needs to come in and help improve this. You know, again, the way to think about this is, this is largely today a very human intensive effort, the tools alert or highlight certain characteristics, but it’s really left to the investigator really left to the human being to do the vast majority of the legwork, do all of the data synthesis, do the evaluation, make a conclusion, draw a recommendation, document all of that. And it’s a very, very time consuming process. So the degree to which technology can be employed to help make those human beings more efficient and effective. That is, is where we’re going.

Whitney McDonald 3:35
Now, before we get into where we’re going with, with new technology and advances in technology in this space, maybe we can talk through what exists today. What are some best practices in tackling, identifying and in identifying money laundering today?

Phil McLaughlin 3:52
Sure. So I think we’re, we think about this, kind of from a current state future state sort of thing, right? So really, the goal is gonna be to improve the level of automation and to include or improve the level of efficiency with the investigators. Like I said, a lot of the processes today are very limited in terms of what they look at. So you know, as you’re thinking about as people are thinking about, you know, how would they improve their process, looking at more data, automating anything that they can the robotic process automation capabilities are out there are a good place to start in terms of, you know, thinking about how to make things better. Expanding the frequency of monitoring again today, because it’s a very human intensive process. Things get looked at maybe on a once a year basis, once every six months basis, if there’s things that we can do to make that an ongoing, continuous monitoring type of a solution that lets us find things faster, and allows human beings to flow focus on the things that are really salient as opposed to separating the wheat from the chaff so to speak. Again, a lot of the tools that are out there right now, or are very limited in terms of their technology or their their detection capabilities, a lot of them are rule based. So, you know, the simple rules that are capable of being implemented in these kinds of solutions are, are very limited. And that’s really why, you know, the broadening of the of the technology platforms and the algorithmic content and moving towards AI, and some of these other things are so important to help us, you know, begin to tackle these problems in a more efficient way.

Whitney McDonald 5:41
You can’t talk about anything in technology right now without talking through AI. Right. So maybe you could expand on that a little bit. Why is AI well suited for this type of technology? And how can AI fit into this puzzle?

Phil McLaughlin 5:55
Thing, AI is exceptionally well suited to the AML challenge. The thing that’s great about it is, is that, you know, as people now are starting to have a pretty broad awareness, some of these AI tools and techniques are really approaching the ability to emulate, you know, the more advanced features of human cognition, right, so they are really able to, not only, you know, do what we consider to be really relatively simple things, but but much more complex levels of thinking much more complex levels of inference of summarization, those kinds of things. And, you know, being able to figure out even with traditional AI techniques, you know, be able to, to do anomaly detection, figure out what’s notable, and, you know, separate the needle, find the needle in the haystack, so to speak. There’s a bunch of different flavors of AI that are sort of relevant here, you know, two good examples are natural language processing. So if you think about what an investigator has to do, to go read news articles, read various documents and artifacts, and try to infer and connect and synthesize all the connections there. It’s a huge amount of work and the degree to which you can get knowledge from text and understand it and present it to a person in a way that is easy for them to then internalize and take action on. That’s just a super, super big force multiplier. And then, you know, the more traditional, you know, machine learning models, whether they’re classifiers, or whether they’re other types of, of neural networks are really good at at, you know, training to be able to figure out things like entity name, or entity type from an entity name, that’s one of the problems in money laundering is that the, the banks and financial institutions know a lot about their customers, because they vetted them in the onboarding process, but they don’t know much about the counterparties or other related parties. And so the amount of work that can be done to to, in an automated sense to try to collect information on those related parties and counterparties is going to make the total understanding that the investigator has that much more clear and allow them to, you know, more, resolve those issues or solve the cases in a more timely manner.

Whitney McDonald 8:18
Now, we’ve talked through the technology, the opportunity for advancements here the need for solutions like this. Can we talk through where AML right source fits into this and how the technology works?

Phil McLaughlin 8:31
Yeah, sure. So as I mentioned earlier, email is a provider of technology enabled managed services, as well as software solutions to banks, fintechs, and other institutions that have regulatory requirements to help oversee the safety of the global banking systems. We have 1000s of investigators working in the field on KYC, suspicious activity monitoring, you know, those around the globe, really, across the all the different global geographies, in addition to you know, providing sort of these AI LED technology solutions. So we’re really all about trying to bring this great technology along with great people to our customers. You know, one of the things that I would say to somebody who’s looking into trying to embark on, you know, putting their toe in the AI for AML waters is, make sure you work with somebody who knows AML because if you’re just going to work with somebody who knows AI, you’re going to end up paying for their learning curve. And there’s so much nuance in terms of the data and the risk bearing characteristics that are that are relevant and important in the AML space, that you really want to have a partner that understands that stuff. And so, you know, we think we are, you know, the best of the best in that regard, really having, you know, strong practitioners, coupled with that AI technology, you said bringing that AML AI, sort of blend to the our customers.

Whitney McDonald 10:07
Now speaking of a customer, maybe you can talk through or identify some use cases who would use this? How would you get in? How would you integrate maybe talking through what that entails?

Phil McLaughlin 10:20
For sure. So our customers and our solutions tend to follow the customer lifecycle. So think about your relationship with your bank, you open your account with a bank, they onboard you, they make sure you’re not a bad guy, they make sure you’re who you say you are. Once you’re on boarded, then you can start transacting. So there’s some, you know, transaction monitoring that’s going on the so called suspicious activity monitoring. So we’re helping in that regard. There’s also sort of know your customer monitoring that goes on through the course of the lifecycle. So let’s say you’re a bank, let’s say you’re a corporation, and you’ve just had a change over in your board of directors, and you want to understand, you know, you’re the bank wants to understand, is this new person on your board? Are they a good guy? Are they a politically exposed person? Do they have? Is there negative media about them? Is there some other risk that should be surfaced related to, to this district board member. And so we have tools and techniques that allow us to monitor changes in those activities, identify that a change has occurred, evaluate the parties involved, to see if there’s a risk event that we need to surface, and then we’ll surface that, then then, you know, we also help with more broader just workflow across that whole client lifecycle, helping customers to manage that full trajectory from onboarding through monitoring through suspicious activity detection, periodic monitoring, and then to offboarding. So it’s, it’s all the stuff that you’d think about in terms of, you know, that full lifecycle.

Whitney McDonald 11:59
Now, quantifying here some savings that that someone that a bank might benefit from, from this client might benefit from this catching fraud examples of successes here.

Phil McLaughlin 12:14
Yeah, definitely. So like I mentioned, the big banks do a pretty good job of understanding who their customers are, but it’s this community of related parties where there’s often a lot of insights that can be gained. And also just like, understanding sort of the specific nature of the activity and trying to identify if something is anomalous. So for example, we have, you know, a tremendous number of our customers who’ve seen, you know, instances where they’ve identified risk in in Counterparty. So for example, some buddy might be have negative media associated with them, they might be a bad guy, they might be a politically exposed person, that kind of stuff. Some of the more interesting ones, when you start looking at the AI techniques, the more advanced AI techniques is looking at things like inconsistent line of businesses. So if you’ve got a banana, or steel company, and they’re buying iron ore, that makes perfect sense, right. And if you’ve got an iron, steel company, they’re paying for bananas, that doesn’t make sense. So the tools and techniques are able to learn by looking at a massive amount of data, what kinds of relationships are appropriate, what kinds of relationships are inappropriate or consistent with what one would expect. And they can highlight that to the investigator that this, this company seems to be doing something that is counter to what one would expect given, given what we know about them. We’ve seen a number of instances of that with our customers, we’ve also seen the issue of money going the wrong way. So let’s say you’ve got a we’ve seen an instance where there was a casino, and they were getting transacted with a company that makes computers and so you would expect to see the money flowing from the casino to the computer company, because they’re purchasing computers to use in their Casino. That would be a perfectly reasonable use case. But what we saw is the money going the other way. It turns out that after further investigation, the the gentleman who was the head of the computer company had a bunch of different activity that he was involved in. And you know, we were able to help surface that particular instance, we’ve seen other instances where companies are related to risky parties or risky jurisdictions. So let’s say that people are concerned about doing business with any buddy who’s not only in Cuba, but doing anything related to Cuba. And so we’re able to detect, for example, that there are companies in Venezuela, who are arranging travel to Cuba, which is not illegal in the context of what they are doing as a company but But, but the US banking folks would want to know that that party is has a relationship with Cuba and is doing something there. So there’s, there’s a lot of those kinds of instances where, you know, we’re able to surface relationships or surface characteristics about the related parties that help make sure that the, the, our customers understand what that full picture of risk is. And it just wouldn’t be practical for humans to do all the legwork to hunt each and every one of those things down. So, you know, at the end of the day, it’s really coming back to automating whatever we can, for the investigator, making the investigator giving the investigator, you know, the, the best point of departure to resolve the investigation as they can. So I the analogy that I like is, um, let’s say, doing an investigation is a 100 meter dash, you know, if we can start a client at the 50 meter line, or the 70 meter line, and all they’ve got to do is get to the end, then that’s, that’s, that’s the goal. And that’s, that’s really what we’re seeing with our customers, they’re seeing a significant amount of savings, in terms of the amount of time that it takes. And it also puts the investigator in a lot better position because they’re able to then instead of doing all the legwork, all this grunt work of doing Google searches and searching for names and structured databases and searching, you know, downloading transactions and building pivot tables, and totaling in sub totaling all this stuff to see what’s going on. We can give them all of that prevented, we can give them all of that, in a human readable narrative, supported with all the documentary evidence, and it really lets them the investigator focus on using their training their experience, their their education and, and an expertise in actually understanding if there’s financial crime there, as opposed to being an Excel expert or a Google search expert.

Whitney McDonald 16:59
Now with with these use cases, and working with clients and and all of that what you just discussed, what are you working on when it comes to innovating in this space and forward looking maybe just to the end of this year? What am all right sources is working on I know, we talked through AI opportunity and machine learning and of course generative AI as a as a buzzword as well, maybe you can share a little bit about what you’re looking into?

Phil McLaughlin 17:26
Yeah, for sure. So, the good news for us is that we’ve been really bringing AI to the financial crime flight now since 2015. So we are well versed in how to use and employ these different techniques to to solve the problems. We’re looking right now, working in a couple of different areas, one major area that we’re looking at is we’re rolling out the next generation adverse media solution that we have. So really helping, you know, our customers very effectively and efficiently get surfaced articles, news articles content from around the world, that might indicate that they’re a customer or a related parties involved in something that would be risk bearing, we have a tremendous amount of natural language processing and other artificial intelligence techniques that are baked into that, and we’re gonna see, you know, a two fold improvement, at least in terms of the efficiency with with with which the investigators can adjudicate the articles as well as a significant drop in false positives. All of these adverse Media Solutions, try to do their best to give relevant content, but it’s a hard problem to solve the next generation of our stuff that we’re bringing out is going to do a fantastic job of that. We’re also we are working in a number of different areas with with LLM with the generative AI techniques. You know, the way we think about this is, this is just another tool in the ever evolving AI toolbox. So, you know, when when we talk about AI, it really spans the gamut of all the different things that can fit in there, right, from natural language processing to more traditional, supervised and unsupervised machine learning to the new LM and a whole bunch of other, you know, techniques that are in this toolbox. And so, you know, our view that L is that LM is is just another tool that we can utilize to help solve problems. The work that we’ve done with LM M’s and we expect to have some of these use cases in production in the next few months, has largely to do with with inference and reasoning and summarization, like those are the things that the algorithms are really very good at. So asking the LLM, read this article and tell me if this entity is a good guy or a bad guy. They’re pretty good at that. Looking to do knowledge extraction, taking the LLM and saying, you know, tell me how old the subjects in this article are or tell me what jurisdiction in there that are in, those are very easy things for humans to do. Not very easy things for some of the traditional AI techniques that we’ve had out there, and, but are something that LLM ‘s are very good at. So, again, we’re looking at a number of different areas having to do with data inference, summarization, those sorts of things. And we’re going to be peppering them essentially, throughout the solutions, we’ll be sort of using them to augment the existing capabilities. A lot of the techniques that are there could have AI techniques are often layered. So you may start off with one technique, and that may get you 50% of the answers, then you may need to go to a second technique with that is different or better to get to another 25%. And then you need to go to a third technique to get you in another, you know, 10, or 15%. And so the way we think about these MLMs, in the short term is, is them just being another layer another tool to help fit into that tapestry of, of solutions that we’re using, you know, in the big picture, our view is that, you know, these, the MLMs are here to stay, they are going to become more and more important tool in the toolbox. Like I said, they’re not going to replace everything. They don’t do everything, as well as some of the other techniques. But I think that over time, we’ll see them becoming more and more prevalent. I also don’t think that in this space, at least LLM ‘s are ever going to just entirely take over the the process, right. There’s always going to be the need for human judgment, human intuition, human training and experience to be able to adjudicate the final outcome. And while the LMS can definitely help with efficiency and effectiveness, they’re they’re never going to be maybe never too strong. But in the near term, they’re not going to be sort of the standalone, you know, Uber AI solution that that answers the questions for us.

Whitney McDonald 22:12
You been listening to the buzz of bank automation news podcast, please follow us on LinkedIn. And as a reminder, you can rate this podcast on your platform of choice. Thank you for your time and be sure to visit us at Bank automation news.com For more automation news,

Tags: AMLfraudThe Buzz
Previous Post

Proposed legislation would regulate AI adoption in EU

Next Post

First Internet Bank taps Narmi for digital account opening

Related Posts

trump
Risk & Security

2 senior CFPB officials ‘still working,’ source says

April 24, 2025
The Consumer Financial Protection Bureau headquarters in Washington, D.C., U.S., on Wednesday, Dec. 23, 2020. The Trump administration has done its best to cut the CFPB giving large banks a reprieve from aggressive enforcement and new rules. With Joe Biden ascending to the White House, Wall Street is worried it will be quickly resurrected. Photographer: Ting Shen/Bloomberg
Risk & Security

CFPB to cut financial firm supervision, shift focus Off fintechs

April 17, 2025
payments fraud
Risk & Security

79% of organizations hit by payment fraud in 2024

April 15, 2025
Next Post
RPA vendor UiPath looks to digital growth after ‘choppy’ Q1

First Internet Bank taps Narmi for digital account opening

Stay Informed with Our Newsletters

EMERGING FINTECH DIRECTORY

Emerging Fintech Directory

The Buzz Podcast

RETAIL BANKING

Huntington Bank’s new branch in Spartanburg

Huntington Bank resolves outage

May 7, 2025
bank

Barclays, Banco Santander, Lloyds plan product expansion

May 5, 2025
satisfactiin

Online banks lead FIs in customer satisfaction

May 2, 2025

SPONSORED

Just Released! 2025 Strategy Benchmark

May 1, 2025

Leverage Treasury Management to Turn Fraud Prevention Into a Strategic, Revenue-Generating Opportunity

April 1, 2025

A growth mindset in banking requires AI

March 27, 2025
  • About Us
  • Help Center
  • Contact Us
  • Privacy Terms
  • ADA Compliance
  • Advertise

 Manage Cookie Consent

Connect

twitter linkedin podcast podcast podcast
© 2025 Royal Media
No Result
View All Result
  • NEWS
    • All News
    • AI
    • Business Banking
    • Core
    • Cloud
    • Payments
    • Retail Banking
    • Risk & Security
  • DATA
  • TRANSACTIONS
  • EVENTS
    • Bank Automation Summit
  • PODCAST
  • WEBINARS
    • Upcoming Webinar
    • Webinar Library
  • SUBSCRIBE
  • Log In / Account

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • NEWS
    • All News
    • AI
    • Business Banking
    • Core
    • Cloud
    • Payments
    • Retail Banking
    • Risk & Security
  • DATA
  • TRANSACTIONS
  • EVENTS
    • Bank Automation Summit
  • PODCAST
  • WEBINARS
    • Upcoming Webinar
    • Webinar Library
  • SUBSCRIBE
  • Log In / Account

THIS WEBSITE USES COOKIES

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “I CONSENT”, you consent to the use of ALL the cookies.

Cookie settingsI CONSENT

Review our Cookie Policies
.
Manage Cookie Consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
__cfruidsessionCloudflare sets this cookie to identify trusted web traffic.
__RequestVerificationTokensessionThis cookie is set by web application built in ASP.NET MVC Technologies. This is an anti-forgery cookie used for preventing cross site request forgery attacks.
_abck1 yearThis cookie is used to detect and defend when a client attempt to replay a cookie.This cookie manages the interaction with online bots and takes the appropriate actions.
34f6831605sessionGeneral purpose platform session cookie, used by sites written in JSP. Usually used to maintain an anonymous user session by the server.
a64cedc0bfsessionGeneral purpose platform session cookie, used by sites written in JSP. Usually used to maintain an anonymous user session by the server.
ak_bmsc2 hoursThis cookie is used by Akamai to optimize site security by distinguishing between humans and bots
ARRAffinitysessionARRAffinity cookie is set by Azure app service, and allows the service to choose the right instance established by a user to deliver subsequent requests made by that user.
ARRAffinitySameSitesessionThis cookie is set by Windows Azure cloud, and is used for load balancing to make sure the visitor page requests are routed to the same server in any browsing session.
AWSELBsessionAssociated with Amazon Web Services and created by Elastic Load Balancing, AWSELB cookie is used to manage sticky sessions across production servers.
bm_sz4 hoursThis cookie is set by the provider Akamai Bot Manager. This cookie is used to manage the interaction with the online bots. It also helps in fraud preventions
cf_ob_infopastThe cf_ob_info cookie is set by Cloudflare to provide information on HTTP Status Code returned by the origin web server, the Ray ID of the original failed request and the data center serving the traffic.
cf_use_obpastCloudflare sets this cookie to improve page load times and to disallow any security restrictions based on the visitor's IP address.
CONCRETE5sessionThis cookie is set by the provider Concrete5 web content management system. This is a necessary cookie used for maintaining the user session between pages.
connect.sid1 monthThis cookie is used for authentication and for secure log-in. It registers the log-in information.
cookielawinfo-checkbox-advertisement1 yearSet by the GDPR Cookie Consent plugin, this cookie is used to record the user consent for the cookies in the "Advertisement" category .
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
cookiesession11 yearThis cookie is set by the Fortinet firewall. This cookie is used for protecting the website from abuse.
crmcsrsessionGeneral purpose platform session cookie, used by sites written in JSP. Usually used to maintain an anonymous user session by the server.
ep20130 minutesThis cookie is set by Wufoo for load balancing, site traffic and preventing site abuse.
JSESSIONIDsessionThe JSESSIONID cookie is used by New Relic to store a session identifier so that New Relic can monitor session counts for an application.
LS_CSRF_TOKENsessionCloudflare sets this cookie to track users’ activities across multiple websites. It expires once the browser is closed.
PHPSESSIDsessionThis cookie is native to PHP applications. The cookie is used to store and identify a users' unique session ID for the purpose of managing user session on the website. The cookie is a session cookies and is deleted when all the browser windows are closed.
sxa_sitesessionThis cookie is used to identify the webiste visitor's session state across page requests on server.
ts3 yearsPayPal sets this cookie to enable secure transactions through PayPal.
ts_c3 yearsPayPal sets this cookie to make safe payments through PayPal.
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
wordpress_test_cookiesessionThis cookie is used to check if the cookies are enabled on the users' browser.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
CookieDurationDescription
__cf_bm30 minutesThis cookie, set by Cloudflare, is used to support Cloudflare Bot Management.
_zcsr_tmpsessionZoho sets this cookie for the login function on the website.
663a60c55dsessionThis cookie is related to Zoho (Customer Service) Chatbox
bcookie2 yearsLinkedIn sets this cookie from LinkedIn share buttons and ad tags to recognize browser ID.
bscookie2 yearsLinkedIn sets this cookie to store performed actions on the website.
e188bc05fesessionThis cookie is set in relation to Zoho Campaigns
geosessionThis cookie is used for identifying the geographical location by country of the user.
iamcsrsessionZoho (Customer Support) sets this cookie and is used for tracking visitors (for performance purposes)
langsessionLinkedIn sets this cookie to remember a user's language setting.
languagesessionThis cookie is used to store the language preference of the user.
lidc1 dayLinkedIn sets the lidc cookie to facilitate data center selection.
optimizelyEndUserId1 yearOptimizely uses this cookie to store a visitor's unique identifier which is a combination of a timestamp and a random number. Different variations of web parts are shown to users that optimizes the website's user experience.
tableau_localesessionTableau uses this cookie to determine the preferred language and country-setting of the visitor - This allows the website to show content most relevant to that region and language.
UserMatchHistory1 monthLinkedIn sets this cookie for LinkedIn Ads ID syncing.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
CookieDurationDescription
AWSELBCORS20 minutesThis cookie is used by Elastic Load Balancing from Amazon Web Services to effectively balance load on the servers.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
CookieDurationDescription
__gads1 year 24 daysThe __gads cookie, set by Google, is stored under DoubleClick domain and tracks the number of times users see an advert, measures the success of the campaign and calculates its revenue. This cookie can only be read from the domain they are set on and will not track any data while browsing through other sites.
_ga2 yearsThe _ga cookie, installed by Google Analytics, calculates visitor, session and campaign data and also keeps track of site usage for the site's analytics report. The cookie stores information anonymously and assigns a randomly generated number to recognize unique visitors.
_gcl_au3 monthsProvided by Google Tag Manager to experiment advertisement efficiency of websites using their services.
_gid1 dayInstalled by Google Analytics, _gid cookie stores information on how visitors use a website, while also creating an analytics report of the website's performance. Some of the data that are collected include the number of visitors, their source, and the pages they visit anonymously.
ajs_anonymous_idneverThis cookie is set by Segment to count the number of people who visit a certain site by tracking if they have visited before.
ajs_group_idneverThis cookie is set by Segment to track visitor usage and events within the website.
ajs_user_idneverThis cookie is set by Segment to help track visitor usage, events, target marketing, and also measure application performance and stability.
browser_id5 yearsThis cookie is used for identifying the visitor browser on re-visit to the website.
CONSENT2 yearsYouTube sets this cookie via embedded youtube-videos and registers anonymous statistical data.
sid1 yearThe sid cookie contains digitally signed and encrypted records of a user’s Google account ID and most recent sign-in time.
uid1 yearThis is a Google UserID cookie that tracks users across various website segments.
vuid2 yearsVimeo installs this cookie to collect tracking information by setting a unique ID to embed videos to the website.
WMF-Last-Access1 month 21 hours 5 minutesThis cookie is used to calculate unique devices accessing the website.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
CookieDurationDescription
_dc_gtm_UA-1038974-41 minuteUsed to help identify the visitors by either age, gender, or interests by DoubleClick - Google Tag Manager.
_fbp3 monthsThis cookie is set by Facebook to display advertisements when either on Facebook or on a digital platform powered by Facebook advertising, after visiting the website.
_pxhdpastUsed by Zoominfo to enhance customer data.
fr3 monthsFacebook sets this cookie to show relevant advertisements to users by tracking user behaviour across the web, on sites that have Facebook pixel or Facebook social plugin.
IDE1 year 24 daysGoogle DoubleClick IDE cookies are used to store information about how the user uses the website to present them with relevant ads and according to the user profile.
test_cookie15 minutesThe test_cookie is set by doubleclick.net and is used to determine if the user's browser supports cookies.
VISITOR_INFO1_LIVE5 months 27 daysA cookie set by YouTube to measure bandwidth that determines whether the user gets the new or old player interface.
YSCsessionYSC cookie is set by Youtube and is used to track the views of embedded videos on Youtube pages.
yt-remote-connected-devicesneverYouTube sets this cookie to store the video preferences of the user using embedded YouTube video.
yt-remote-device-idneverYouTube sets this cookie to store the video preferences of the user using embedded YouTube video.
yt.innertube::nextIdneverThis cookie, set by YouTube, registers a unique ID to store data on what videos from YouTube the user has seen.
yt.innertube::requestsneverThis cookie, set by YouTube, registers a unique ID to store data on what videos from YouTube the user has seen.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
CookieDurationDescription
049fc2ef5beb27056b07d9e4c4d13fd3sessionNo description
akaalb_http_misc_subssessionNo description
AnalyticsSyncHistory1 monthNo description
BIGipServermsocu-web-2-rr.webfarm.ms.com.10882sessionNo description
bm_misessionNo description available.
CX_4061522881 yearNo description
DCID20 minutesNo description
debugneverNo description available.
DrupalVisitorMobilesessionNo description available.
ep2033 monthsNo description available.
frbatlanta#langsessionNo description
geo_info1 yearNo description available.
GoogleAdServingTestsessionNo description
li_gc2 yearsNo description
loglevelneverNo description available.
loom_anon_commentsessionNo description available.
loom_referral_videosessionNo description
mkjs_group_idneverNo description available.
mkjs_user_idneverNo description available.
MorganStanley.ClientServ.Common.IPZipAccess.IPZipCookie.DEFAULT_COOKIE_NAMEpastNo description
NSC_us_nbsl-83+63+21+25-91sessionNo description
nyt-a1 yearThis cookie is set by the provider New York Times. This cookie is used for saving the user preferences. It is used in context with video and audio content.
nyt-gdpr6 hoursNo description available.
nyt-purr1 yearNo description available.
OCC_Encrypted_CookiesessionNo description
polleverywhere_session_id14 daysNo description
ppnet_2020sessionNo description available.
ppnet_2777sessionNo description available.
reuters-geosessionNo description
shell#langsessionNo description
smcx_0_last_shown_atsessionNo description available.
tableau_public_negotiated_localesessionNo description available.
vary1 monthNo description
www#langsessionNo description
X-Vive-CountrysessionNo description
xn_uuid1 monthNo description
Save & Accept
Powered by CookieYes Logo